O setor de alimentos e a segurança alimentar são uma preocupação global e o Brasil é um dos principais responsáveis pela demanda mundial de alimentos (Estadão). Nesse sentido, quais os principais desafios relacionados à gestão de dados para a otimização da eficiência operacional do Brasil no setor alimentício/agronegócio que hoje representa 21% do PIB do Brasil?
Este artigo aborda o tema com o viés da experiência da Aquarela em projetos de Advanced Analytics e de Inteligência Artificial realizados em grandes operações no Brasil. O risco da falta de informações é tão relevante como o seu excesso e a falta de análise, podendo impactar a eficiência da cadeia logística do setor como um todo.
Abaixo, elaboramos alguns destes principais riscos.
Caracterização do setor de alimentos
O setor de alimentos é bastante variado devido à grande extensão da cadeia produtiva, que vai desde os insumos agrícolas, a industrialização, logística do transporte até a comercialização nos mercados consumidores e por fim o consumidor final.
Como características fundamentais, o setor de alimentos está diretamente ligado a fatores que podem ter grande variabilidade e pouco controle, tais como:
- Clima (temperatura, volume de água, luminosidade e outros);
- Fatores econômicos, como flutuações de moeda;
- Infraestrutura;
- Demanda do mercado interno/externo.
Além desses fatores, abaixo elencamos alguns relacionados à gestão dos dados. Também mostramos como eles, se bem organizados, podem ajudar a mitigar os efeitos das variáveis não controláveis da cadeia de suprimentos de alimentos.
01 – Incompletude das informações
A cadeia de suprimentos é bastante grande. Isso torna os dados complexos e de difícil interpretação devido às diferentes fases de cada processo, cultura e região. Além disso, faz com que muitas decisões importantes de planejamento ocorram com bastante limitação informacional e alto risco. Em outras palavras, as decisões são tomadas sem uma visão do cenário completo da cadeia, seguindo, em grande parte, a intuição dos gestores.
A falta de informação de qualidade é um grande risco. Se hoje faltam dados, imaginem como era o cenário há 10 ou 20 anos.
Nos últimos anos, o campo, a indústria e o varejo têm mostrado grandes avanços em seus processos de informatização com diversas soluções de rastreabilidade. Com a evolução das tecnologias da indústria 4.0 (IOT e o 5G) nos próximos anos, é provável que o mercado de alimentos, desde o setor agrícola e industrial até o comercial, detenham informações mais completas para tomada de decisão do que as que estão estão disponíveis hoje.
02 – Dados de várias fontes
Se os dados estão se tornando cada vez mais presentes com o desenvolvimento da informatização e comunicação, então o próximo problema é tentar analisar dados em fontes múltiplas e desconexas.
Diferentes dados são frequentemente armazenados em diferentes sistemas, levando assim a análises incompletas ou imprecisas. Combinar dados manualmente para formar dataset (o que são datasets?) de análise é um trabalho bastante pesado e demorado e pode limitar as percepções da realidade das operações.
O que se busca é a construção de Data Lakes aderentes ao tipo de gestão para democratizar o acesso aos dados por profissionais do mercado, otimizando desse modo suas atividades com soluções de analytics cada vez mais poderosas. Isso não apenas libera tempo gasto no acesso a fontes múltiplas, como também permite comparações cruzadas e garante que os dados sejam completos.
03 – Dados de baixa qualidade
Ter dados incorretos pode ser tão ou mais prejudicial do que não tê-los. Nada é mais prejudicial à análise de dados do que dados imprecisos, principalmente se a ideia é utilizar as práticas de ciência de dados e machine learning. Sem uma boa entrada, a saída não será confiável.
Uma das principais causas de dados imprecisos são os erros manuais cometidos durante a entrada de dados, principalmente quando são informações coletadas de maneira manual. Outro problema são os dados assimétricos: quando as informações de um sistema não refletem as alterações feitas em outro sistema e assim o deixa desatualizado.
Os projetos de planejamento estratégico de analytics buscam mitigar e/ou eliminar esses problemas. Isso acontece a partir de processos sistemáticos de dicionarização de dados, levantamento de processos, funções, assim por diante. Abaixo, deixamos alguns artigos relacionados:
- Dicionário de dados Tradicional vs Analítico
- 4 Métricas para a qualidade de dados
- 5 Níveis de maturidade analítica na visão da Aquarela
- 7 dicas sobre design de indicadores
04 – Falta de talentos em dados
Algumas organizações e empresas, de um modo geral, não conseguem atingir melhores índices de eficiência nas operações, pois sofrem com a falta de talento na área de análise de dados. Em outras palavras, mesmo que a empresa detenha tecnologias e dados coerentes, ainda sim a mão de obra para executar as análises e os planos de ações conta muito no final do dia.
Esse desafio pode ser mitigado de três maneiras:
- Desenvolver um stack tecnológico analítico sempre atualizado e aderente ao negócio e com materiais de capacitação atualizados.
- Adicionar as competências analíticas no processo de contratação. Além disso, investir na capacitação constante da equipe sobre as novas tecnologias de dados relacionadas ao stack tecnológico da operação.
- Utilizar a terceirização de analytics para aceleração do processo. Neste artigo, por exemplo, elencamos os principais aspectos a serem considerados para definir a escolha de um bom fornecedor.
05 – Personalização de valores e as características de produto no setor de alimentos
Embora, segundo a Embrapa, cerca de 75% de todo setor alimentício mundial esteja baseado em apenas 12 tipos de plantas e 5 tipos de animais, são milhares de produtos diferentes, comercializados de múltiplas maneiras, preços e prazos no mercado consumidor final.
Apenas como exemplo, na área de proteína animal, o processo de comercialização da carne de gado exige investimentos, infraestrutura, prazos e processos bastante diferentes do que seria para a produção da carne suína ou mesmo a de frango.
Já que os processos são diferentes, os dados gerados pela cadeia de produção também se tornam distintos, exigindo personalizações nos sistemas de informação e bancos de dados. Como consequência, há alterações em modelos de:
A recomendação é a parametrização dos sistemas com base em classificações mais comuns no mercado e foco nos produtos mais importantes do ponto de vista estratégico (margem de contribuição, volume ou preço de vendas).
5 desafios reais de dados no setor de alimentos – Considerações finais
Neste artigo, fizemos um apanhado de alguns pontos relevantes sobre os desafios reais de dados na área de alimentos, setor que o Brasil desponta como um dos principais atores globais.
Trata-se de uma área complexa com diversos fatores de risco e grandes oportunidades de otimização com o uso cada vez mais intensivo de dados. Anteriormente, escrevemos um artigo relacionado às estratégias de dados para a comercialização de energia e que em partes tem os mesmos desafios ligados à tomada de decisão no setor alimentício.
Nós, na Aquarela Analytics, trabalhamos constantemente com estes desafios de tornar o complexo algo simples e com mitigação de riscos. Por isso, se ficar com dúvidas, entre em contato conosco!
Quem é a Aquarela Analytics?
A Aquarela Analytics é vencedora do Prêmio CNI de Inovação e referência nacional na aplicação de Inteligência Artificial Corporativa na indústria e em grandes empresas. Por meio da plataforma Vorteris, da metodologia DCM e o Canvas Analítico (Download e-book gratuito), atende clientes importantes, como: Embraer (aeroespacial), Scania, Mercedes-Benz, Grupo Randon (automotivo), SolarBR Coca-Cola (varejo alimentício), Hospital das Clínicas (saúde), NTS-Brasil (óleo e gás), Auren, SPIC Brasil (energia), Telefônica Vivo (telecomunicações), dentre outros.
Acompanhe os novos conteúdos da Aquarela Analytics no Linkedin e assinando a nossa Newsletter mensal!
Autor
Fundador e Diretor Comercial da Aquarela, Mestre em Business Information Technology com especialização em logística – Universiteit Twente – Holanda. Escritor e palestrante na área de Ciência e Governança de Dados para indústria e serviços 4.0.